Moving Average Matlab Mais Suave


Um modo simples (ad hoc) é apenas tomar uma média ponderada (ajustável por alfa) em cada ponto com seus vizinhos: ou alguma variação do mesmo. Sim, para ser mais sofisticado, Fourier pode transformar seus dados primeiro, depois cortar as altas freqüências. Algo como: isso corta as 20 freqüências mais altas. Tenha cuidado para cortá-los simetricamente, caso contrário, a transformada inversa não é mais real. Você precisa escolher cuidadosamente a freqüência de corte para o nível correto de suavização. Este é um tipo de filtragem muito simples (filtragem de caixa no domínio da frequência), para que você possa tentar atenuar as frequências de alta ordem, se a distorção for inaceitável. Respondeu 4 de outubro 09 às 9:16 FFT não é uma má idéia, mas provavelmente é exagerado aqui. As médias em execução ou em movimento dão resultados geralmente fracos e devem ser evitadas para qualquer coisa, além da lição de casa tardia (e ruído branco). Use a filtragem Savitzky-Golay (em Matlab sgolayfilt (.)). Isso lhe dará os melhores resultados para o que você está procurando - algum alisamento local, mantendo a forma da curva. Documentação Este exemplo mostra como usar os filtros de média móvel e o reescrever para isolar o efeito de componentes periódicos da hora do dia em Leituras de temperatura por hora, bem como remover o ruído indesejado da linha de uma medida de tensão de circuito aberto. O exemplo também mostra como alisar os níveis de um sinal de relógio, preservando as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover grandes outliers. Motivation Smoothing é como descobrimos padrões importantes em nossos dados, deixando de lado as coisas que não têm importância (ou seja, o ruído). Usamos a filtragem para executar esse alisamento. O objetivo do suavização é produzir mudanças lentas de valor, de modo que seja mais fácil ver tendências em nossos dados. Às vezes, quando você examina dados de entrada, você deseja suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto de Logan durante todo o mês de janeiro de 2011. Note que podemos visualizar visualmente o efeito que a hora do dia tem nas leituras de temperatura. Se você está interessado apenas na variação diária da temperatura ao longo do mês, as flutuações horárias só contribuem com o ruído, o que dificulta a discernição das variações diárias. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um filtro de média móvel Na sua forma mais simples, um filtro médio móvel de comprimento N leva a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, nós construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua 124 para a média total. Isso nos dá a temperatura média em cada período de 24 horas. Retardamento do filtro Observe que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de nosso filtro de média móvel ter um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) 2 amostras. Podemos explicar esse atraso manualmente. Extraindo diferenças médias Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura geral. Para fazer isso, primeiro, subtrair os dados suavizados das medidas horárias de temperatura. Em seguida, segmente os dados diferenciados em dias e leve a média em todos os 31 dias do mês. Extraindo o envelope de pico Às vezes, também gostaríamos de ter uma estimativa variável suave de como os altos e baixos do nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função de envelope para conectar altas e baixas extremas detectadas em um subconjunto do período de 24 horas. Neste exemplo, garantimos que haja pelo menos 16 horas entre cada extremo alto e extremo baixo. Nós também podemos ter uma noção de como os altos e baixos estão tendendo tomando a média entre os dois extremos. Filtros médios em movimento ponderados Outros tipos de filtros médios móveis não pesam cada amostra de forma igual. Outro filtro comum segue a expansão binomial de (12,12) n Este tipo de filtro se aproxima de uma curva normal para valores grandes de n. É útil para filtrar o ruído de alta freqüência para pequenos n. Para encontrar os coeficientes para o filtro binomial, convolve 12 12 com ele próprio e, então, convoluciona a saída com 12 12 um número de vezes prescrito. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro exponencial de média móvel. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um grande tamanho de janela. Você ajusta um filtro de média móvel ponderada exponencialmente por um parâmetro alfa entre zero e um. Um maior valor de alfa terá menor alisamento. Amplie as leituras por um dia. Selecione a saída do seu CountryDocumentation tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto da série temporária financeira, tsobj. Lag indica o número de pontos de dados anteriores usados ​​com o ponto de dados atual ao calcular a média móvel. Output tsmovavg (vector, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados ​​com o ponto de dados atual ao calcular a média móvel. Saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para o objeto da série temporária financeira, tsobj. A média móvel exponencial é uma média móvel ponderada, em que o período de tempo especifica o período de tempo. As médias móveis exponenciais reduzem o atraso aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pesa o preço mais recente em 18.18. Porcentagem Exponencial 2 (TIMEPER 1) ou 2 (WINDOWSIZE 1). Output tsmovavg (vector, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que o período de tempo especifica o período de tempo. As médias móveis exponenciais reduzem o atraso aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pesa o preço mais recente em 18.18. (2 (período de tempo 1)). Saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para o objeto da série temporária financeira, tsobj. A média móvel triangular suaviza os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela do ceil (numperiod 1) 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular suaviza os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela do ceil (numperiod 1) 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (tsobj, w, pesos) retorna a média móvel ponderada para o objeto da série temporária financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados ​​para preços mais recentes e fatores menores para preços anteriores, a tendência é mais sensível às mudanças recentes. Saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor, fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados ​​para preços mais recentes e fatores menores para preços anteriores, a tendência é mais sensível às mudanças recentes. Saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série temporária financeira, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod para ser o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod para ser o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 dimensionar para operar ao longo de inteiro positivo com o valor 1 ou 2 Dimensão para operar junto, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional e, se não for incluído como entrada, o padrão O valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada por linha, onde cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como um vetor de coluna ou matriz orientada por coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, em que o período de tempo é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o atraso aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pesa o preço mais recente em 18.18. Porcentagem exponencial 2 (TIMEPER 1) ou 2 (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo inteiro não negativo Selecione seu país

Comments